Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; 44(9): 1265-1286, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34709981

RESUMO

This study evaluated the adsorption and enzymatic degradation of azo dyes when using SMS. The laccase present in the SMS was characterised, and the maximum activity was obtained at pH 2, a temperature of 45°C, a Michaelis-Menten constant (Km) of 0.264 mM, and a maximum reaction rate (Vmax) of 117.95 µmol L-1 min-1. The presence of NaCl at 5 mM inhibited enzyme activity while no inhibition was observed by Na2SO4, typically found in textile wastewater. The maximum dye adsorption (57.22%) was achieved at pH 8.0, 25°C, and 100 g L-1 of SMS while the maximum enzymatic degradation (14.18%) was obtained under the same conditions, except at pH 4.0. The enzymes laccase, lignin peroxidase, and manganese peroxidase trapped in the SMS resulted in higher dye discolouration when compared to that extracted with aqueous solution, meaning that SMS has strong adsorption capacity and is a natural immobilisation matrix, which improves the enzymatic degradation of the dyes. Thus, SMS can be used in the treatment of textile effluents for dye removal by simultaneous mechanisms of adsorption and enzymatic degradation, with reduction of environmental impacts for SMS disposal and reduction of the costs associated with commercial enzymes and adsorbents.


Assuntos
Agaricales , Compostos Azo , Poluentes Químicos da Água , Adsorção , Agaricales/metabolismo , Biodegradação Ambiental , Corantes , Lacase , Indústria Têxtil , Têxteis , Poluentes Químicos da Água/metabolismo , Purificação da Água
2.
J Environ Manage ; 310: 114807, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35231689

RESUMO

The ability of extracellular polymeric substances (EPS) recovered from aerobic granular sludge (AGS) to act as bioflocculant was tested in a pilot-scale sequencing batch reactor (SBR), fed with low-strength municipal wastewater. EPS were compared with the addition of Na-alginate as a standardized biopolymer. The optimal dosage of both biopolymers was determined through jar-test assays (400 mg L-1 of Na-alginate in a 250 mg Ca L-1 and 50 mg L-1 of EPS in pH of 2 ± 0.2). The addition of Na-alginate (Operational Period I- OP-I) and EPS (Operational Period II - OP-II) led to increased adhesion of particles with 2.9 ± 0.45 and 1.3 ± 0.3 g TSS L-1 during OP-I and OP-II, respectively, and fast settling biomass (SVI30 between 68 and 78 mL g-1). Granule predominance occurred at early stages of OP-I (day 37) and OP-II (day 44), presenting diameters mainly within the 212-600 µm range. The reactor showed removal efficiencies of 85% for biochemical oxygen demand (BOD) and above 50% for N-NH4 during the study periods. Furthermore, the addition of EPS as a bioflocculant promoted a substantial increase in polysaccharides (PS = 153.01 ± 121 mg gVSS-1) and proteins (PN = 121.96 ± 69 mg gVSS-1), while the addition of Na-alginate affected mostly the PS content (87 ± 24 mg gVSS-1). The microbial community shifted mainly from Betaproteobacteria (45%) during OP-I to Alphaproteobacteria (64%) in OP-II. Therefore, EPS affected both physical-chemical and microbial features of the AGS biomass without any change in treatment efficiencies. EPS is a promising resource to be recovered from aerobic granular sludge and to be used as an alternative and sustainable bioflocculant.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Aerobiose , Reatores Biológicos , Esgotos/química , Eliminação de Resíduos Líquidos , Águas Residuárias
3.
Environ Technol ; 43(10): 1503-1512, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33084534

RESUMO

Cellulose is a potential resource to be recovered from wastewater treatment plants (WWTP). Enzyme formulations can be employed to hydrolyze cellulose into fermentable sugars, to be further used as biochemical building blocks or reducing its recalcitrance to further treatment processes. This study proposed the production, recovery and formulation of cellulase using domestic wastewater as culture medium and its application for the hydrolysis of cellulosic residues recovered from WWTPs. Cellulose was recovered from raw sanitary wastewater using a fine-mesh sieve (0.35 mm) and quantified through enzymatic hydrolysis and thermogravimetric analysis. The production, concentration and formulation of cellulase enzyme resulted in an enzymatic blend of endoglucanases (7.3 UFP/mL), cellobiohydrolases (7.4 UCMC/mL) and beta-glucosidases (4.4 UBGL/mL). The content of the recovered cellulosic material was 21.3% according to enzymatic hydrolysis and 27.7 for thermogravimetric results. The enzymatic hydrolysis of the WWTP residue using the produced cellulase (107.6 ± 10.2 mgreduc/gresidue) showed better results than using the commercial cellulase complex (66.4 ± 2.5 mgreduc/gresidue). This fact showed the potential of application of the produced enzyme for the hydrolysis of cellulosic residues recovered from WWTP processes. In a non-waste biorefinery approach, the generated hydrolysate can be further used for producing added-value biomolecules including biofuels and biochemicals.


Assuntos
Celulase , Celulose , Biocombustíveis , Celulase/química , Celulose/química , Hidrólise , Águas Residuárias
4.
Bioprocess Biosyst Eng ; 44(1): 161-171, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32862326

RESUMO

This study investigated the effect of magnetite nanoparticles (Np-magnetite) added to a pilot-scale sequencing batch reactor (SBR) treating domestic wastewater, to improve aerobic granular sludge (AGS) formation and the effects of granule disintegration. Np-magnetite additions (75 mg L-1) were made during the start-up of the reactor and repeated after 100 and 170 days, when granule disintegration was observed. From the first Np-magnetite addition, SVI5 was reduced from 1315 to 85 mL g-1. The granular biomass was observed on the 56th day, when 57% of the granules presented diameters bigger than 212 µm. The 100-day disintegration episode disturbed the granular biomass, reducing the volatile suspended solids by 51%, increasing the SVI values to above 200 mL g-1. Np-magnetite addition recovered all the granular biomass parameters to the values observed before disintegration. The treatment efficiency was stable during operation of the reactor for nutrients (52.8 ± 23.4% NH4+-N; 54.5 ± 12.2% PO43--P) and carbonaceous organic matter (71.7 ± 12.7% BOD5; 77.5 ± 10.0% CODt). Np-magnetite addition changed the microbial community of the granular sludge, analysed via high-throughput 16S RNA sequencing, and recovered the treatment efficiency previously disturbed by the disintegration processes. These results indicate the potential of Np-magnetite as an agent for sludge aggregation in an aerobic granular reactor.


Assuntos
Reatores Biológicos , Nanopartículas de Magnetita/química , Águas Residuárias/microbiologia , Purificação da Água , Aerobiose
5.
Appl Microbiol Biotechnol ; 104(13): 5697-5709, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32415318

RESUMO

Aerobic granular sludge (AGS) is a microbial biofilm self-aggregation, which is effective for nutrient and pollutant removal, through the development of dense microbial layers bound together with extracellular polymeric substances (EPSs). However, long start-up times and granule disintegration are still challenges ahead. An array of external additives, including ion chelating agents, sludge-based enhancers, and magnetic influence have been tested to overcome these barriers. The application of such additives may promote enhanced EPS production, neutralization of charges on the bacterial surface, acts as a core-induced agent, or as a bridge to connect EPSs and cell surfaces. Although additives may improve the granule formation without reducing treatment efficiencies, there are still environmental concerns due to the fate and toxicity of discharged excess sludge. This mini-review identifies an array of external additives and their mechanisms to improve granulation properties, and proposes discussion about the technical and economic viability of these additives. KEY POINTS: • Additives reduce granulation time and repair granule disintegration. • Biopolymer-based additives fulfill technical and environmental requirements. • Sludge-based additives are cheap and in line with the resource recovery concept. • The need for environmental-friendly additives for aerobic granular sludge process. • External additives affect granular biomass size distribution.


Assuntos
Biopolímeros/farmacologia , Esgotos/microbiologia , Eliminação de Resíduos Líquidos , Aerobiose , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Biomassa , Reatores Biológicos , Quelantes/farmacologia , Matriz Extracelular de Substâncias Poliméricas/efeitos dos fármacos , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Nanopartículas de Magnetita , Esgotos/química
6.
Appl Biochem Biotechnol ; 190(1): 113-128, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31301011

RESUMO

Raw domestic wastewater was used as a culture medium for cellulase production in a bubble column reactor (6.2 UFP/mL, 64.6 U/L h) using the strain Trichoderma harzianum TRIC03-LPBII. Cellulases presented optimum pH and temperature between 4 and 5 and 50 and 70 °C, respectively. Enzymatic extract was concentrated through ultrafiltration and then a cellulolytic formulation was prepared with the addition of sorbitol (50% w/v) and benzoic acid (0.05% w/v). High cellulase stability of around 100% was reached after 30 days at 4 °C. The concentrated extract was also dried in a spray-dryer with the addition of maltodextrin at 20% (w/v), resulting in powder enzymatic formulation with 85% stability after 60 days. With these characteristics, the liquid and powder cellulase products have potential to be used in different industrial applications.


Assuntos
Reatores Biológicos , Celulase/metabolismo , Pós , Águas Residuárias/química , Meios de Cultura , Estabilidade Enzimática , Fermentação , Concentração de Íons de Hidrogênio , Cinética , Temperatura , Trichoderma/enzimologia , Trichoderma/metabolismo
7.
Bioresour Technol ; 276: 42-50, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30611085

RESUMO

The production of cellulases using domestic wastewater as an alternative culture medium and reducing the pollutant charge of the resultant effluents were assessed for the first time in this study. Cellulase production was carried out in a bubble column, column-packed bed and stirred tank reactors by Trichoderma harzianum. Maximum cellulase activity and productivity of 31 UFP/mL and 645 UFP/mL.h, respectively were achieved in the bubble column bioreactor system without immobilization. The fermented broth was microfiltrated and ultrafiltrated, leading to a cellulase recovery of 73.5% using a 30 kDa membrane and resulting in a 4.23-fold activity concentration. Chemical oxygen demand and nitrogen concentration were reduced 81.37% and 52.9%, respectively, showing great promise in producing cellulases using domestic wastewater with concomitant development of a medium- to-high added-value process and reduced environmental impact. These results contribute to the development of sustainable bioprocesses approaching a biorefinery concept.


Assuntos
Celulase/metabolismo , Águas Residuárias/química , Reatores Biológicos , Fermentação , Trichoderma/metabolismo
8.
Biomed Res Int ; 2017: 5191046, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29082248

RESUMO

Gibberellic acid (GA3) is an important phytohormone, a member of gibberellins family, which acts as a promoter and regulator of plant growth. This study aimed to evaluate GA3 production by Fusarium moniliforme LPB03 and Gibberella fujikuroi LPB06 using different techniques of fermentation, solid state fermentation (SSF), submerged fermentation (SmF), and semisolid state fermentation (SSSF), and different types of bioreactors. In all techniques, citric pulp (CP), a subproduct obtained from the extraction of orange juice, was employed as the substrate/support. GA3 production by SSF reached 7.60 g kg-1 and 7.34 g kg-1 in Erlenmeyer flasks and column bioreactors, respectively. For SmF, the highest concentration of GA3 obtained was 236.00 mg L-1 in Erlenmeyer flasks, 273.00 mg L-1 in a 10 L stirred tank reactor (STR), and 203.00 mg L-1 in a 1.5 L bubble column reactor (BCR). SSSF was conducted with a CP suspension. In this case, GA3 concentration reached 331.00 mg L-1 in Erlenmeyer flasks and 208 mg L-1 in a BCR. The choice of the fermentation technique is undoubtedly linked to the characteristics and productivity of each process. The methods studied are inexpensive and were found to produce good proportions of GA3, making them suitable for several applications.


Assuntos
Ácido Cítrico/química , Fermentação , Giberelinas/biossíntese , Reguladores de Crescimento de Plantas/biossíntese , Reatores Biológicos , Fusarium/química , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Gibberella/química , Gibberella/genética , Gibberella/crescimento & desenvolvimento , Giberelinas/química , Giberelinas/genética , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/genética
9.
Appl Biochem Biotechnol ; 167(5): 1144-56, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22371062

RESUMO

This work aimed to study the production of laccase from Pleurotus ostreatus DSM 1833 and Phoma sp. UHH 5-1-03 using banana peels as alternative carbon source, the subsequent partial purification and characterization of the enzyme, as well the applicability to degrade endocrine disruptors. The laccase stability with pH and temperature, the optimum pH, the K (m) and V(max) parameters, and the molar mass were determined. Tests were conducted for assessing the ability of degradation of the endocrine disruptors t-nonylphenol, bisphenol A, and 17α-ethinylestradiol. Laccase production of 752 and 1,117 U L⁻¹ was obtained for Phoma sp. and P. ostreatus, respectively. Phoma sp. laccase showed higher stability with temperature and pH. The laccase from both species showed higher affinity by syringaldazine. The culture broth with banana peels induced the production of two isoforms of P. ostreatus (58.7 and 21 kDa) and one of Phoma sp. laccase (72 kDa). In the first day of incubation, the concentrations of bisphenol A and 17α-ethinylestradiol were reduced to values close to zero and after 3 days the concentration of t-nonylphenol was reduced in 90% by the P. ostreatus laccase, but there was no reduction in its concentration by the Phoma sp. laccase.


Assuntos
Ascomicetos/metabolismo , Técnicas de Cultura/métodos , Disruptores Endócrinos/isolamento & purificação , Lacase/biossíntese , Musa/metabolismo , Epiderme Vegetal/metabolismo , Pleurotus/metabolismo , Ascomicetos/crescimento & desenvolvimento , Biocatálise , Biodegradação Ambiental , Disruptores Endócrinos/metabolismo , Estabilidade Enzimática , Fermentação , Imersão , Resíduos Industriais , Lacase/química , Lacase/isolamento & purificação , Lacase/metabolismo , Pleurotus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...